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Abstract

The textual content of a document and its publication date are intertwined. For example,
the publication of a news article on a topic is influenced by previous publications on sim-
ilar issues, according to underlying temporal dynamics. However, it can be challenging to
retrieve meaningful information when textual information conveys little information or when
temporal dynamics are hard to unveil. Furthermore, the textual content of a document is not
always linked to its temporal dynamics. We develop a flexible method to create clusters
of textual documents according to both their content and publication time, the powered
Dirichlet-Hawkes process (PDHP). We show PDHP yields significantly better results than
state-of-the-art models when temporal information or textual content is weakly informative.
The PDHP also alleviates the hypothesis that textual content and temporal dynamics are
always perfectly correlated. PDHP retrieves textual clusters, temporal clusters, or a mix-
ture of both with high accuracy. We demonstrate that PDHP generalizes previous work —the
Dirichlet-Hawkes process (DHP) and uniform process (UP). Finally, we illustrate the changes
induced by PDHP over DHP and UP with a real-world application using Reddit data. We
detail how PDHP recovers bursty dynamics and show that its limit case accounts for daily
and weekly publication cycles.

Keywords Clustering - Temporal Bayesian prior - Powered Dirichlet process - Hawkes
process

1 Introduction

Online information is generated at an unprecedented rate. Every minute, 500,000 comments
are posted on Facebook, 400h of videos are uploaded on YouTube, and 500,000 tweets are
published on Twitter. A possible approach to make sense out of this mass of information
is to cluster publication events together. Grouping similar publications together help under-
standing topics of interest or generate summaries of daily news. Many clustering algorithms
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are based on text similarity, that is, how similar the words of two published documents are
Blei et al. [6], Rathore et al. [19] and Bahdanau e al. [3]. Another relevant variable to group
information together is the time of publication [5, 9]. For example, two news articles about
forest fires might be unrelated if the second article were published years after the first one
despite a close lexical similarity. Imagine a news website that publishes a series about history
every day at midday. Temporal dynamics would help understand that a publication the next
day at midday is likely to be related to previous publications, even if the story (and thus the
vocabulary) is different.

Many models that aim at understanding the temporal dynamics of clusters work by select-
ing a subset of observations according to a temporal sampling function [1, 5, 25]. However,
sampling observations in time implies defining a sampling function that might not correctly
model the temporal dynamics at stake. Besides, these works are based on a Dirichlet prior
(DP) for clustering. The DP considers counts as a parameter, where a document always counts
for 1. It has been argued that such modeling is not fit to account for the arrival of documents
in continuous-time settings. In [8], the authors combine techniques of standard textual clus-
tering with point processes. The idea is to infer the time-sampling function parameters as
well as the rest of the model. Explicitly, they derive the Dirichlet—-Hawkes process (DHP)
prior for documents cluster allocation that takes time as a parameter and yields non-integer
counts. It has been argued that this method cannot handle limited cases where text is less
informative (e.g., short texts, overlapping vocabularies) [25].

Our present work develops the Powered Dirichlet Hawkes process (PDHP) that has pre-
viously been introduced in [18], as a mean to handle this case. Besides, we highlight other
limiting cases in which DHP fails whereas PDHP yields good results, for instance when
temporal information conveys little information (overlapping Hawkes intensities, few obser-
vations). We also show there are cases where documents within a textual cluster do not
follow the same temporal dynamics, which the DHP is not designed to handle. For instance,
an article published by a popular newspaper is unlikely to have the same influence on sub-
sequent similar articles (temporal dynamics) as the same article published by a less popular
newspaper. We overcome all these limitations by developing the Powered Dirichlet—-Hawkes
process, which yields better results than DHP on every dataset considered (up to +0.3 NMI).
It also allows us to distinguish textual clusters from temporal clusters (documents that fol-
low the same dynamic independently from their content). Finally, we conduct large scale
experiments on real-world datasets from Reddit.

As an extension to our previously published paper [18], we refine the analysis of PDHP’s
outcome on news subreddits. In particular, we explicitly show and discuss the inferred time-
lines inferred by PDHP. We observe the role of r from this perspective, which provides us
with heuristics on how to determine it; these heuristics are discussed in an additional para-
graph. Typically, we show that our method allows to recover more or less bursty events from
real-world data streams by controlling r. Finally, we show that in its limit case where r is
large, PDHP accounts for daily and weekly publication dynamics.

Our contributions are listed below:

— We highlight and explain the limitations of the DHP prior: it does not handle weakly
informative temporal and textual information and it is not designed to consider different
dynamics between text and time.

— We derive the powered Dirichlet Hawkes process (PDHP) as a new prior in Bayesian
nonparametric for the temporal clustering of a stream textual documents, which is a
generalization of the Dirichlet—-Hawkes process (DHP) and of the uniform process (UP).
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— We show how the PDHP prior performs better than DHP and UP priors through thorough
evaluation and comparison on several synthetic datasets and real-world datasets from
Reddit.

— We show that PDHP prior allows to select the information clusters are based on; we
choose to favor their generation more according to documents’ textual content or temporal
dynamics.

2 Background
2.1 How publication times carry valuable information

Before reviewing existing methods incorporating a temporal dimension into text clustering,
we detail how this information is relevant to the task. Recent works on the online spread of
textual documents have highlighted several key properties regarding the link between textual
content and date of publication.

First, it has been shown that textual documents do not get published independently one
from the other. Often, the arrival of a document is conditional on the publication of earlier
documents. A straightforward illustration is that a new research paper is built on previous
publications and is likely to treat a similar topic; the present article exists because of all the
references it cites. A 2012 research paper highlights the critical role played by interactions
in the re-publication of a tweet on Twitter [14]. The authors claim the probability of retweets
vary by 71% on average when considering temporal interactions. More recent works find that
although the interaction between publications plays a significant role in later publications,
the interaction matrix is often sparse [16]—an article on textual clustering is more likely to
appear conditional to publications about NLP, whose vocabulary is only a small subset of the
scientific literature’s one. It highlights the need to cluster words together to retrieve temporal
interaction relevant to a textual clustering problem. In this context, a cluster should carry
information about the interaction between the documents it contains.

Second, a problem that arises is the temporal aspect of interaction. It has been shown that
online information interaction decays quickly with time [7, 15]. Although the rate at which
interaction influence decays depends on the dataset, it seems to fade rapidly for most online
spreading processes [10]. To keep the temporal information relevant, clusters must depend
on time. For example, two series of news articles about vaccines might not be related (one
might not trigger the other) if one was published in 2010 and the other in 2021; they are two
different clusters since both obey their own dynamics, although their vocabulary is similar.

2.2 Temporal clustering of textual documents

The use of temporal dimension in documents clustering has been studied on many occasions;
a notable spike of interest happened in 2006. Many authors tackled the problem of inferring
time-dependent clusters from models based on LDA [5, 11, 22]. However, most of these
models are parametric, meaning the number of clusters is fixed at the beginning of the
algorithm. Depending on the considered time range and the dataset, the number of clusters
needs to be fine-tuned with several independent runs, making them hardly usable for many
real-world applications. In all three references cited, the authors mention that a nonparametric
version of the model might be derivable.
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Ahmed et al. proposed the Recurrent Chinese Restaurant Process (RCRP) as an answer to
this problem [1]. Instead of considering a fixed-size dataset, this model can handle a stream
of documents arriving in chronological order, and the number of clusters is automatically
updated. In this model, time is split into episodes to capture the temporal aspect of cluster
formation; it considers an integer count of publications within a given time window. A later
version of the model from 2010, the Distance-Dependent Chinese Restaurant Process (DD-
CRP) tries to alleviate this approximation by replacing fixed-time episodes with a continuous-
time sampling function [4]. However, the model still considers integer counts with only their
distribution over time changing. Thus, the model is not designed to consider every temporal
information in a continuous-time setting.

Du et al. answered this problem by combining the Dirichlet process with the Hawkes
process, used to model the appearance of events in a continuous-time setting. The key idea
is to replace the counts of a Dirichlet process with the intensity function of the Hawkes
process. The resulting Dirichlet-Hawkes process (DHP) is then used as a prior for clustering
documents appearing in a continuous-time stream. The inference is realized with a sequential
Monte Carlo (SCM) algorithm. Following DHP, two articles have been published extending
the idea: the Hierarchical Dirichlet—-Hawkes process (HDHP) [13] in 2016 and Indian Buffet
Hawkes process in 2018 [20]. Another work proposed an EM algorithm for the inference
[24] in 2017. (It uses a heuristic method to update the number of clusters and cannot handle
a stream of documents.)

A common feature of all the models we mentioned is that they use a nonparametric
Dirichlet process (DP) prior or variations built on it, such as DHP and HDHP. Yet, on several
occasions, it has been pointed out that there are no specific reasons to use this process in
particular and that alternative forms might work better depending on the dataset. In [23], the
author relaxes several conditions associated with DP and shows that alternative priors are an
equally valid choice in Bayesian modeling. In [21], the authors derive the uniform process
(UP) and show that it performs better on a document clustering task. In [17], the authors
generalize UP and DP within a more general framework, the powered Dirichlet process
(PDP), and show it performs better than DP on several datasets.

Moreover, it has recently been highlighted that DHP does not work well when the textual
information within documents conveys little information, that is when the text is short [25]
or when vocabularies overlap significantly. To answer this problem, the authors develop an
approach based on Dirichlet process mixtures, which is not designed for continuous-time
document streams—the temporal aspect comes from a sampling function as in [1, 4]. There
are other limiting cases for DHP, for instance when temporal information is conveys little
information (few observations, overlapping temporal intensities) or when documents within
textual clusters do not follow the same temporal dynamics. To overcome those limitations,
we develop the powered Dirichlet—-Hawkes process in the next section.

3 Model and algorithm

3.1 Dirichlet prior and alternatives

We briefly recall the definition of a Dirichlet prior. A Dirichlet prior for clustering implements
the assumption that the more a cluster is populated, the more chances a new observation

belongs to it (“rich-get-richer” property). Besides, there is still a chance that a new observation
gets assigned to a newly created cluster. It is often expressed using a metaphor, the Chinese
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Restaurant process (CRP), and it goes as follows: if an i th client arrives in a Chinese restaurant,
they will sit at one of the K already occupied tables with a probability proportional to the
number of persons already sat at this table. They can also sit alone at a new table K + 1 with
a probability inversely proportional to the total number of clients in the restaurant. When
their choice is made, the next client arrives, and the process is repeated. Let ¢ be the cluster
chosen by the ith customer, C~ the table assignment of previous customers up to i — 1,
N, the population of table ¢, C the number of already occupied tables and oy € R the
concentration parameter. The process can be written formally as:

ey

CRP(ci=c|€—,ao)=:ao+N -

The uniform process [21] has been proposed as an alternative to the DP prior. In this
context, a new customer entering the restaurant has an identical chance to sit at either of the
occupied tables, and a chance to sit at an empty table inversely proportional to the number
of occupied tables. Formally:

- ifc=1,2,...C
U-CRP(C; = ¢|C-, ag) = WCI ¢ @)
a0+c ifc=C+1

Finally, the powered Dirichlet process [17] generalizes the two above, stating that the
probability for a new client to sit at a new table depends arbitrarily on the number of customers
already sat at this table:

) Cife=1,2,..,C
P-CRP(C; = c|r, C-, ap) = “°+Z Ny 3)
~ifce=C+1

RS SRR
where r € R™ is an hyper-parameter. Varying r allows to give more or less importance
to the “rich-get-richer” hypothesis_of DP. Note that we recover previous processes as
P-CRP(r =0, C—, ag) = U-CRP(C—, «p),and as P-CRP(r = 1, C—, ap) = CRP(C~, a).
We will use this more general form in the rest of this work and make r vary to compare those
priors in the experimental section.

3.2 Hawkes processes

A Hawkes process is defined as a self-stimulating temporal point process. It is used to
determine the probability of an event happening given the realization of all previous events
in a continuous space. Point processes are fully characterized by the intensity function A(),
which is related to the probability P of an event happening between ¢ and t + At by A(t) =
lima;—0 W. In the case of Hawkes processes, A(¢) is defined conditionally on
all the events that happened at times lower than 7. In our setup, we define one Hawkes process
for each cluster, independent from the others. The intensity of the Hawkes process associated
with cluster c is defined as:

heHar ) = Y @l Rt c) “
H<r,c

where #; . is the time of the ith observed in cluster ¢, H<; . = {ticltic < t}i=12,. 1S
the history of events in cluster ¢ up to ¢, c is a vector of coefficients, ¥ (¢) is a vector of
kernel functions with the same dimension as & and - represents the dot product. The kernel
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functions are set on stone. We will later infer the weights vector @ to determine which
entries of the kernel vector are the most relevant for a given situation. This technique has
become standard in Hawkes processes modeling and used in several occasions [9, 26]. Finally,
we consider an additional time-independent Hawkes process (that is a Poisson process)
of intensity A(f) = Xo. This process is used as the Dirichlet—-Hawkes equivalent of the
concentration parameter o in a Dirichlet process [see Eq. (1)]. It translates the probability
of opening a new cluster as the realization of a Poisson process. In the same way that in DP
no observation is assigned to a cluster whose counts is ¢« but instead to a new cluster, no
observation will be associated with the Poisson process but instead to a new Hawkes process.

Finally, the likelihood of a combination of independent Hawkes processes can be written:

LOIH<r.0) = LO0IHT.0) ]'[LC<AC|H<T,C)

= fo Aodt l_[e Jy ket ]_[)»c(fz|H<t,L,c)

tic

= ML M 0dt TG oMy, 0) ®)

i,c'

1 “/,C =C

where T is the upper time of the considered observation window, going from 0 to 7. Note
T
that L(Ag) = e~ Jo *0dt pecause no event will be assigned to the Poisson process.

3.3 Powered Dirichlet-Hawkes process

Following the reasoning in [8], we substitute the counts Ny of the PDP with the inferred
Hawkes intensities in the PDP, resulting in the following form for the powered Dirichlet—
Hawkes prior [18]:

A(17)
71fc<c
Ao+D o AL (1)
P(Ci =clti,r, Ao, Hegy o) = 0 Z ( . (6)
T e =C+l

where #; is the arrival time of document i. We reformulated the Dirichlet-Hawkes process in
order to allow nonlinear dependence () on the non-integer counts ().

3.4 Textual modeling

We choose to model the textual content of documents as the result of a Dirichlet-multinomial
distribution. This model is purposely simple to ease the understanding, but can easily be
replaced by a more complex one. A more complete textual modeling is out of the scope of
this work, which aims to highlight the efficiency of the PDHP. Here, a document will be
associated with a given cluster according to words count in every cluster and words count in
the document only. The generative process is as follows:

0; ~ Dir(80); wy,; ~ Mult(6;) 7

where 0; is the cluster of document 7, and w,; is the vth word of document i. Let
Lm(C<l ¢|N<i.c, 6p) be the marginal joint distribution of every document’s cluster allo-
cation up to the ith one. The likelihood of the ith document belonging to cluster ¢ can then
be expressed as:
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L(C; = c|N<j s ni,00) = P(n;|C;i = ¢, N<j ¢, 00)
['Ixt(C<i,c|N<i,c» 90)
‘Ctxt(C<i—l,c|N<i,c7 00)

patcil l_[ F(Nr.v+”i.tr+90,u)
I'(Ne+ni+bp) 1 1v L Bs7)
W l_[ F(Nc.v""go.v)
F(Ne+6o) L lv Do)
['(Ne + 6o) 1—[ C'(New +niv +60,0)

" T(Ne +ni +60) T (Ne.w + 60)

®

v

where N, is the total number of words in cluster ¢ from observations previous to i, n; is the
total number of words in document i, N , the count of word v in cluster c, n; , the count of
word v in document i and 6y = >, 6o ».

3.5 Posterior distribution

The resulting posterior distribution of the ith document over clusters is calculated using Bayes
theorem. It is proportional to the product of the textual likelihood Eq. (5) and the temporal
powered Dirichlet-Hawkes prior Eq. (8):

P(C; =clr,n;, t;, N, H<t,c)
o« P(n;|C; =c¢, Neje,00) P(Ci =clti, r, Ao, Her o)

Textual likelihood Temporal prior
_ F(NC+90) l_[ F(Nc,v+ni,v+90,v)
T(Ne+ni +60) L1 TWey +60)
AU e
m ifc= 1, ceey C

Ao =
oy i e=CH

(€))

We recall that A.(¢) is defined Eq. (4). The textual likelihood of cluster C + 1 is computed
by setting Nc41,, = 0.

3.6 Algorithm and changes induced by PDHP

We use a similar algorithm to the one in [8]. Briefly, the algorithm is a sequential Monte Carlo
(SMC) that takes one document at a time in their order of arrival. The algorithm starts with
a number Npy of particles whose weights are ), = ﬁ each of which will keep track of
a hypothesis on documents clusters. After a few iterations, particles that contained unlikely
allocation hypotheses are discarded and replaced by more likely ones. The likeliness of a
hypothesis is encoded in the weights of each particle w),.

For each particle, when a new document arrives, (1) the cluster of the document is sampled
according to a categorical distribution over all clusters, whose weights are determined by
Eq. (9). After the cluster of the new document has been sampled, (2) the kernel weights
@ from Eq. (4) are updated using Eq. (5). For efficiency purpose, we infer @ using Gibbs
sampling from a set of N, pre-computed & vectors. We finally (3) update the weights w,, of
each particle according to the posterior Eq. (9) such as wﬁ,"H) = wg,") x Eq. (9). If the weight
of a particle falls below a value w5, the particle is discarded and replaced by another

@ Springer



2928 G. Poux-Médard et al.

For each new document
For each particle

Step 1 Step 2 Step 3
Cluster selection for document i Update Cj's Hawkes parameters Update particle weights

Samp\eweightA
/ (2 ([ (% [

(sample vector/4] [0

Likelinood| ~ [Likelinood Likelinood [Samp\eveclor&z] [c, Ao (0  Plaalas)
Cy(€a8)| |C,(Ea®) Cc (Ea8) -
U j :
D T e ~
L
X Resample particles
o ZWZZT,S"SYJ Weighted average [ ple p

.
Multinomial = R—
’ _ - -( .‘

Gibbs sampled optimal vector (', weight < threshold | particle

= /

[Pamde weight at \-1] X [Like\ihood Eq9

&
-
[ New particle weight after document i

)
)

Weight part.1

Normalize

Fig.1 Schematic workflow of the SMC algorithm—for each new observation from a stream of document, we
run steps 1 (sample document’s cluster), 2 (update sampled cluster’s internal dynamics) and 3 (update particle
hypothesis’ likeliness) for each particle, and then discard particles containing the less likely hypothesis on
cluster allocation

10 . =~ Intensity red cluster 0.030
o oL - Intensity blue cluster o
~ ——— Probability when r=0.1
N 0.025 4 ~— Probability when r=1.0
—— Probability when r=2.0
Textual likelihood
00 ° ° 0.020 Hawkes intensity
0o 05 10 15
Time
0.015
=, Prior prob. cluster 1 0.010 4
= Prior prob. cluster 2
0.005
0.000 T T T T T T
0 20 40 60 80 100
=05 =1 =2 Clusters

Fig.2 Effect of r on cluster selection probabilities—the probability for each cluster to get chosen (solid lines)
for several values of » and fixed individual textual likelihood (blue bars) and Hawkes intensity (orange bars)

existing one with sufficient weight. The whole process is illustrated in Fig. 1. By updating
incrementally the likelihood associated with each of the pre-computed & sample vectors, the
algorithm treats each new observation in constant time—see below.

The task of updating kernels coefficients (2) is the same as in any Hawkes process, and the
task of updating particles weights and resampling them (3) is common to any SMC algorithm.
The change induced by the PDHP compared to the DHP happens at step (1). First of all, we
note that for r = 1 the PDHP prior is identical to the DHP prior. From Poux-Médard et al.
[17], lowering the value of r reduces the “rich-get-richer” aspect of the PDP (“rich-get-less-
richer”), whereas increasing it leads to a “rich-get-more-richer” effect. These metaphors can
be translated as follows in our temporal context: For lower values of r, the relative difference
between cluster’s temporal intensities plays a less important role in cluster selection, whereas
higher values of r tend to exacerbate these differences and make the temporal aspect of the
greatest consequence on the choice of a cluster. In other words, tuning the value of r allows
to give more or less importance to the temporal aspect of the clustering. This is illustrated in
Fig. 2. On the left, we plot the situation when a new observation has to get assigned a cluster.
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The associated Hawkes intensities are the base to compute the prior probability for either
cluster. This quantity is then modulated using r to give more or less importance to intensity
differences between clusters. On the right of Fig. 2, we plot the probability for various clusters
to be chosen [which is directly proportional to the posterior distribution, Eq. (9)] according
to r when their textual likelihood and Hawkes process intensity are known. Note that for
r = 0, the probability for any cluster to get chosen is directly proportional to its textual
likelihood (Dirichlet—uniform process), whereas when r increases, the probability of getting
chosen gets closer to a selection only based on the temporal aspect.

This makes the main interest of the PDHP model. Tuning the parameter » allows one to
choose whether inferred clusters are based on textual or temporal considerations. It general-
izes several state-of-the-art works, which are special cases of the PDHP for different values
of r. The DHP [8] is equivalent to PDHP for » = 1; the UP [21] is equivalent to PDHP when
r = 0. In the following sections, we show how fine-tuning r systematically yields signifi-
cantly better results than setting it to = 0 or r = 1 (up to a gain of 0.3 on our experiments’
normalized mutual information metric). We also show how varying it allows to recover one
kind of clustering or the other (textual or temporal) with high accuracy and see how it affects
clustering results on several real-world datasets.

3.7 Time complexity

— (Step 1) When an nth observation is treated, the algorithm depicted in Fig. 1 samples a
cluster from C possible clusters. For each possible cluster c, it first computes the textual
likelihood from Eq. (8); this operation has a complexity that scales linearly with the
vocabulary size O(V). Then, it computes the Hawkes intensity at the time of the new
document from Eq. (4). The time complexity scales with the size of the cluster ¢’s history
Hi,,c o< n. However, as in [8], observations in the history that are older than a time
to1q are discarded —the threshold for “being old” is determined by the kernel « (¢) from
Eq. (4). Therefore, the active history H~ .y, <s,,c has a constant size, which depends on
the density of observations in time, noted p—which does not vary in most cases. The
difference between #,, and #.]q4 is constant and noted At¢. Finally, this operation is repeated
C + 1 times, once for each cluster and once for the empty cluster, yielding a complexity
for the first step of Fig. 1 equal to O((C + 1)(V + pAt)).

— (Step 2) The algorithm then updates the coefficients of the triggering kernel. First, for each
of Nsamples sample vectors, we must increment its likelihood given the new observation.
Once again, from Eq. (5), this is done by discarding older observations. The considered
history H 1,4, <1, has a size that scales with p Az, with p the observations density. The
complexity of updating the likelihood therefore takes O(Nsamples 0 At). Their weighted
average is performed in constant time.

— (Step 3) Finally, updating the particles’ weight boils down to retrieving their likelihood,
which has already been computed earlier, which takes a constant time O(1).

Each of these steps is performed Nyt times, once per particle, and Nops times, once
per new observation. Resampling unlikely particles can be done in constant time, which
leaves us with the final time complexity of the algorithm: O(Nobs Npart ((C + 1)(V + pAt) +
Nsamplesp At + 1)). We note that complexity depends linearly on the size of the dataset
Nops. The processing time of one new observation mostly depends on the number of existing
clusters, given all the other parameters are constant over time.
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4 Experiments
4.1 Synthetic data
4.1.1 Synthetic data generation

We simulate a case where only two clusters are considered. Each cluster has its own vocab-
ulary distribution over 1000 words and its own kernel weights «, with Gaussian Hawkes
kernel functions « (¢) of parameters (i, o) = (3, 0.5), (7, 0.5) and (11, 0.5) [see Eq. (4)].
Finally, we set Ag = 0.05. We first simulate one independent Hawkes process per cluster
using the Tick Python library [2]. The processes are stopped at time ¢+ = 1500, which makes
arough average of 7000 events per run. Then we associate each simulated observation with a
sample of 20 words drawn from the corresponding cluster’s word distribution. Inference has
been performed using a 8 core processor (i7-7700HQ) with 8GB of RAM on a laptop, which
underlines how scalable the algorithm is. As stated before, the algorithm treats each new
document in constant time O(1), which ranged from 0.05s on synthetic data to maximum
Is on real-world data. Note that this number is directly proportional to the number of active
inferred clusters, and thus depends strongly on the dataset.

We generate ten such datasets for every considered value of vocabulary overlap and
Hawkes intensities overlap, which leave us with ~ 200 datasets. Overlap is defined as the
common area of two distributions, normalized by the total area under the distributions. For
example, if the vocabulary of one cluster ranges from words “1” to “100” with uniform
distribution, and the vocabulary of another cluster from words “50” to “150” with uniform
distribution, the overlap equals 50%. We define the overlap of Hawkes process intensity in
the same way. If the triggering Hawkes kernel of one cluster is a Gaussian function with
(u,0) = (3, 1) and one associated observation at t = 0, and the triggering kernel of the
other is also a Gaussian function but with (1, o) = (5, 1) also with an associated observation
att = 0, the overlap equals 32% (see Fig. 3). When computing the Hawkes intensity overlap,
every observation within a cluster and its associated timestamp are considered. The definition
of overlaps is illustrated in Fig. 3. To enforce a given vocabulary overlap (Fig. 3-right), we
shift the word distributions of the clusters from which events’ vocabulary is sampled. To

[ Textual overlap
007
*1 [ Temporal overlap
0.06
15 0.05
c
= S
g _g 0.04
2 10 5
= 6 0.03
05 0.02
/\/\'\/M \
o5 000 .
0 10 2 30 2 50 6 0 10 20 30 P 50
t Words

Fig. 3 Overlaps—(left) Temporal overlap is defined as the ratio between the area common to two Hawkes
intensities and the total area under the intensity functions. (Right) Textual overlap is defined as the proportion
of vocabulary that is common to two clusters, weighted by the probability of words within their respective
cluster
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Fig.4 PDHP yields good NMI values—normalized mutual information (NMI) for various values of r, inten-
sities overlap and vocabulary overlap, for one dataset per combination. The results for » = 0 are the output of
the uniform process, the results for r = 1 are the output of the DHP [8], and the other values of r correspond
to other special cases of PDHP. The darker the better. Overall, PDHP yields good values of NMI

enforce a given Hawkes intensities overlap (Fig. 3-left), we shift the event times of every
event in one of the clusters until we get the correct overlap (+=5%).

Note that we consider ten different datasets instead of considering ten runs per dataset for
two reasons. First, the generation of Hawkes processes is highly stochastic, so a model might
perform significantly better on a single dataset only by chance. Second, given the way the
SMC algorithm works, the standard deviation between runs is small: At each iteration, Npat
clustering hypotheses are tested, which is equivalent to running Np,y times a single clustering
algorithm. We heuristically set Np,x = 8, as we observe no significant improvement using
more particles. ~

The other parameters we use for clustering synthetic data are: g = 0.1, 00 = 1, k(¢) =
[G(t; 3,0.5),G(t; 7,0.5), g(t 11, 0.5)] with G(#; i, o) the Gaussian function, Nsamples =
2.000 and whres = 57—

We are interested in varying both vocabulary and intensities overlap to exhibit the limits
of DHP and how PDHP overcomes them. Note that in the synthetic data experiments in
[8] (Fig. 3a, b), the intensities overlap is almost null, which makes the task easier for the
Hawkes part of the algorithm. The primary metric we use throughout the experimental section
is the normalized mutual information (NMI). During the experiments, we also considered
the Adjusted normalized rand index and the V-measure, which are well adapted to evaluate
clustering results when the number of inferred clusters is different from the true number of
clusters. The observed trends in results from these other metrics are identical to the ones
observed for NMI. Therefore we choose to report only the results of the latter for clarity.
These additional measurements are provided in the linked repository along with the code and
datasets.

4.1.2 PDHP yields better results as vocabulary overlap increases
We report our results when the intensities overlap is null, with varying r and the vocabulary

overlap in Fig. 5a. Because we consider ten different datasets for each set of overlap parame-
ters, it makes no sense to report the absolute average NMI since it can vary greatly from one

I All codes and implementations are available at https://github.com/GaelPouxMedard/PDHP.
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Fig.5 PDHP performs better than DHP—difference between the normalized mutual information (NMI) of
PDHP and DHP model [8] for various values of r, intensities overlap and vocabulary overlap, averaged over
all the datasets. Red means PDHP performed better, and blue means PDHP performed less well. Because
PDHP(r = 1) = DHP, the column r = 1 show no difference. PDHP allows to increase results on NMI by as
much as 0.3 over DHP

dataset to the other. Instead, we plot the relative NMI difference between PDHP and DHP
(r = 1), which we expect to be less dependent on the datasets we consider. However, to give
an idea of the typical performance for some parameters, we also provide raw results for one
run in Fig. 4.

There is a clear correlation between efficiency, vocabulary overlap and r, with a gain on
NMI up to +30% of its maximal value over DHP. As stated at the end of the “Model” section,
this result was expected: The more vocabulary overlap grows, the less textual content carries
valuable information for clustering the documents. This observation supports the concerns
raised in [25] about the efficiency of DHP for clustering short text documents. However,
Hawkes intensities overlap being null, the arrival time of events carries highly valuable
information when textual content does not allow to distinguish clusters well. Therefore,
PDHP provides a way to tackle the problem raised in [25] without the need to sample
observations.

Conversely, when vocabulary overlap is null, the textual content provides enough infor-
mation to distinguish clusters correctly. The temporal dimension only allows refining the
results with no significant improvement for all values of r.

Finally, we can see how the Dirichlet—uniform process (DUP, r = 0) consistently yields
worse performances under these settings. Once again, this is expected since, in this synthetic
experiment, intensities overlap carry valuable information about events clustering; DUP only
considers textual information and therefore misses valuable clues.

4.1.3 PDHP yields similar results for null vocabulary overlap

We report similar results in Fig. 5b. Here, we consider a null vocabulary overlap for various
values of r and of Hawkes intensities overlap. The situation is now the opposite: the textual
content always carries valuable information about clusters, whereas the temporal aspect does
not. We observe the same trend as in Fig. Sa—mnote that the color scale is the same. Varying
the value of r does not significantly change the performances of clustering, meaning the
textual content always carries enough information. This plot shows that PDHP can handle
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Fig.6 Textual (orange) and temporal (blue) NMI vs r when textual and temporal clusters are decorrelated—
from top-left to bottom-right, there are 10, 20, 30, 40, 50, 60, 70, 80 and 90% of generated events that have
been randomly re-assigned a textual cluster. The orange curves are the textual NMI vs r that evaluate how well
events whose vocabulary has been sampled from the same distribution are clustered together; the blue curves
are the temporal NMI vs r that evaluate how well events following the same temporal dynamic are correctly
clustered together. Values presented are for one dataset. We clearly see that varying r allows to retrieve the
right temporal (r large) or textual clusters (r small)

greater intensities overlap without collapsing into unrealistic clustering. Since in most real-
case applications, many clusters with various dynamics may coexist simultaneously, it is
comforting that the PDHP can also handle this case.

4.1.4 PDHP yields better results in more realistic situations

We finally report the results for intermediate values of intensities and vocabulary overlaps in
Fig. 5c,d. Inreal-world applications, it seldom happens that topics vocabularies do not overlap
at all. For example, a quick analysis of The Gutenberg Webster’s Unabridged Dictionary by
Project Gutenberg shows that there are 22% of English words that are associated with more
than one definition. A more detailed analysis would need to consider the usage frequency
of words to get correct statistics. Still, this number provides an estimate of the effective
vocabulary overlap in real-world situations.

In Fig. 5c, we present the results for a fixed intensities overlap of 0.5 versus various
values of r and vocabulary overlaps, and in Fig. 5d for a fixed vocabulary overlap of 0.5
versus various values of r and intensities overlaps. Once again, we see that, on average, using
PDHP can increase the NMI over DHP up to +20% of the maximum possible value.

4.1.5 PDHP finds textual or temporal clusters depending on r

We now slightly modify our experimental setup. Instead of considering that textual clusters
and Hawkes intensities are perfectly correlated, we consider a decorrelated case. A document
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Fig.7 Varying r allows to choose between textual or temporal clustering—the black line plots the difference
between the NMI of textual and temporal clustering. For small r, textual clustering is far better than temporal
clustering, and for large r, the situation is reversed. This is because r determines the importance given to the
temporal dimension and therefore allows choosing between retrieving temporal or textual clusters

whose vocabulary is drawn from cluster C| can now follow the same temporal dynamics as
cluster C;. If we imagine a dataset of news articles published online, it is clear why this
might happen frequently. If popular newspapers such as New York Times or Reuters publish
an article on topic A at time t, it is likely to trigger snowball publications of similar articles
from less popular journals. “Popularity” is chosen as an indicator in this example, but it may
be any other external parameter (centrality in news networks, support of publications, etc.).
In this case, the article’s textual content allows to uncover a “story of publication”, that is,
how the article has been spread, when publication spikes are, etc. However, the temporal
information would help understand the dynamics of publications interaction: which reduced
set of articles triggered the publication of subsequent ones.

In [8], it is assumed that every document within clusters follows a unique dynamics. We
relax this hypothesis in our datasets as follows. For null textual and temporal overlaps, after
a dataset has been generated, we resample the textual clusters of a fraction of randomly
selected events, as well as the words associated with the event. Doing so, we decorrelate
temporal and textual clusters. Therefore, an event is now described by two cluster indicators:
its temporal cluster (which Hawkes intensity made the event appear where it is) and a textual
cluster (which vocabulary has been used to sample the words the event contains).

For completeness, we also show the results for various decorrelations for one run in Fig. 6.
To better understand the tendency of NMIs with respect to r, we plot the average difference
between the NMI of textual clustering and the NMI temporal clustering over all the datasets.
Explicitly: ANMI = NMI;ex; — N M I;o1p. The results are reported in Fig. 7.

As supposed at the end of the “Model” section, varying r allows retrieving one clustering
or the other. Note that the value r of transition from text to time clustering depends directly
on the dataset considered: number of words sampled, vocabulary size, overlaps, etc.

4.1.6 PDHP efficiently infers the temporal dynamics of each cluster
Finally, we show that PDHP correctly infers kernels’ parameters in every situation where

events are correctly assigned to their temporal cluster. The results are reported in Fig. 8. We
looked at the mean absolute error (MAE) and the mean Jensen—Shannon divergence (MJS)
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Fig. 8 Varying r allows to better capture the dynamics at stake—we plot the mean average error and the
mean Jensen—Shannon divergence of the inferred kernel function « with respect to the kernel used to generate
the data, for various values of temporal and textual overlaps. The standard error bars are computed over 10
independent runs. The higher the temporal overlap, the larger the error bars; the larger the textual overlap the
more influence has r

between the vector a used to generate the dataset and the inferred one. We note in Fig. 8
that when textual overlap is small, the inferred kernel is close to the real one and r has little
impact on the result. This is because the inferred kernels mostly depend on the correctness of
inferred clusters: When observations are allocated to the right clusters, the Hawkes process
inference considers relevant information when inferring these clusters’ dynamics. However,
when observations are misallocated, the Hawkes process infers dynamics also based on
times that are not supposed to contribute this cluster’s dynamic. When the clustering task is
simple and yields good results (that is, when textual overlap is small, see Fig. 4), the PDHP
infers correct temporal dynamics (~ 5% MAE); this show our method correctly accounts for
clusters dynamics given the available information.

When vocabulary overlap is large, the value of r significantly influence the kernel inference
performances. However, when r is chosen so that clusters are correctly inferred, the kernel
inference retrieves well the expected kernels (~ 5% MAE). Finally, the temporal kernel
inference is expected to be less precise when temporal overlap increases, which is what
happens in Fig. 8-bottom-right. In this case, the model does not retrieve well the synthetic
kernels even for the optimal r. Besides, the error bars get wider as a consequence of the
clusters allocation to be more challenging. Overall, provided the right clusters, we conclude
that our method correctly retrieves the inferred temporal kernels.

4.2 Real-world application on Reddit

In this section, we extend the results sketched in the original publication [18] on real-world
datasets. We use the PDHP prior to model real streams of textual documents. We consider three
Reddit datasets> about different topics. The News dataset is made of 73.000 titles extracted

2 Available for download at https://files.pushshift.io/reddit/submissions/.
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Fig. 9 Wordclouds, triggering kernels and intensities for clusters the most closely related to Sri Lanka 2019
bombings for various values of r. The points at the bottom of the intensity plots are individual publication
events. Note that triggering kernels are plot on a log—log scale for visualization purpose, because most of the
intensity is focused on small times: Dynamics are bursty

from the subreddits inthenews, neutralnews, news, nottheonion, offbeat, open_news, qual-
itynews, truenews and worldnews, from April 2019. We chose this month because of the
wide variety of events that happened then (for instance, Sri Lanka Easter bombings, Julian
Assange arrest, first direct picture of a black hole, Notre-Dame cathedral fire). We also con-
sider 15.000 post titles of the subreddit TodayILearned (7TIL dataset) and 13.000 post titles
of the subreddit AskScience (AskScience dataset) on January 2019. We extracted the nouns,
verbs, adjectives and symbols from the textual data. We run the experiments using the fol-
lowing parameters: ag = 0.5, g = 0.01, Ngamples = 2.000, Nput = 8 and wypres = ﬁpm
The kernel vector ¥ is made of Gaussian functions, with means located at 0.5, 1, 4, 8, 12, 24,
48,72, 96, 120, 144 and 168 hours. The variance of each are setto 1, 1, 3, 8, 12, 12, 24, 24,
24, 24, 24 and 24 hours. The algorithm will then infer the weights & associated with each
entry of the kernel vector i for each cluster.

4.2.1 PDHP recovers meaningful stories

As an illustrative example, we consider the inferred clusters the most closely related to Sri
Lanka Easter bombings of April 2019 in Fig. 9. The main bursts in the news related to this
event happened on the 21st, 22nd and 23rd of January and, respectively, correspond to the
bombings themselves, the declaration of the state of emergency, and finally their application
on the 23rd. We plot the temporal kernels associated with this event on a log-log scale,
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Fig. 10 r allows to favor text-based of time-based clustering on real world datasets—textual likelihood and
Hawkes process likelihood for various values of r. The lower r the higher textual likelihood is, and the higher
r the higher Hawkes process likelihood is

because most of the intensity is focused on small times: dynamics of information spread are
bursty [12]. We see that inferred dynamics change with r as well as the cluster’s vocabulary,
which is expected since clusters do not contain the same documents. For r = 0, the uniform
process infers clusters based on textual information only; the triggering kernel is inferred
afterward. For r = 2.5 on the contrary, clusters are formed based on the triggering kernel, and
textual information follows; we see from the right-plot that this cluster captures publications
exhibiting a daily intensity cycle; this is visible both in the intensity plot (the bump around
2.10%h which is not present on other temporal kernels) and in the real-time axis where
publications seem to be packed around specific points in time roughly corresponding to a
daily cycle. Given the intensity spikes on 21st, 22nd, and 23rd, it is not surprising that articles
about Sri Lanka bombings are also part of this cluster. Note that the more r increases, the more
intense the triggering kernel is around 24h. We see from Fig. 9 that DHP is a specific case
of our modeling, and that tweaking the r parameter allows to retrieve completely different
results.

4.2.2 PDHP favors temporal or textual clustering depending on r

We report the values of log-likelihoods for every dataset and various values of r in Fig. 10.
The textual likelihood is defined Eq. (8), and the likelihood of a Hawkes process is defined
Eq.(5). Note that r does not appear in either Eq. (8) or Eq. (5); the plot in Fig. 10 thus only
reflects the relevancy of the proposed textual modeling or temporal modeling independently
from PDHP. Those likelihoods evaluate how well the textual or temporal aspect of the dataset
is modeled with no consideration of the model being used. As expected from the synthetic
experiments, varying r makes the model more sensitive to either textual or temporal data
—note the similarity to Fig. 6. A low r favors the textual information clustering and is thus
better at modeling documents’ textual content, whereas a high r favors temporal information
which makes PDHP better at capturing the publication dynamics.

4.2.3 PDHP infers sharper textual clusters for low r

We evaluate how meaningful textual cluster are using an entropy measure. We assume that
a cluster is meaningful when it contains a reduced set of words; a cluster talking about one
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Fig. 11 Textual clusters are more informative for low values of r—weighted average entropy of words distri-
bution for every dataset. Weights corresponds to the number of words within clusters. The error bar represents
the standard error over all the clusters

topic only is more likely to have a smaller vocabulary that a cluster about two or more topics.
A way to measure this is to see how spread the vocabulary of a cluster is using Shannon
entropy. Let N, , be the count of word v in cluster c¢. The normalized Shannon entropy of a
cluster c is defined as:

\%4
Nc,v ) Nc,v (10)

- 1
S(N) = ——— Y log (
¢ - IOg(V) Xv: Z; Nc,v/ Z; Nc,v’

An entropy of 0 means the vocabulary of the cluster is concentrated on a single word among
the V possible words in the vocabulary; an entropy of 1 means that every of the V words is
present to the same extent % In Fig. 11, we plot the mean entropy for various values of r
for all the datasets, along with the standard error over the clusters. The results show that on
average vocabulary is more concentrated within clusters for low values of . The inflection
point of the curves corresponds to what has been previously observed with likelihoods in
Figs. 10 and 7. On the contrary, higher values of r lead to clusters that comprise a less
concentrated vocabulary. This is expected because as r increases, the textual information is
no longer the most relevant data for cluster formation.

4.2.4 PDHP controls the burstiness

In Fig. 12, we plot the intensity function associated with the News dataset on the real time
axis for several clusters for » = 0.5 and r = 1.5. Note that not each of the 300 inferred
clusters are represented, but instead we consider only the ones whose intensity went above
10 at least once, the rest being considered as noise. First of all, both values of r allow to
recover the major events of April 2019 (in order of appearance): the first direct picture of
a black hole (10/04), the arrest of Julian Assange (11/04), the fire of Notre-Dame de Paris
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Fig. 12 PDHP allows for modeling bursty events—we plot PDHP’s intensity for the News dataset over the
observation period for two values of r. The clusters plot here are the ones out of ~300 clusters that have an
intensity going above 10 at least once. A lower r finds globally relevant clusters, whereas a higher r allows to
recover shorter bursty events

cathedral (15/04), the release of the Mueller report on Donald Trump (18/04) and the Sri
Lanka Easter bombings (21/04). The top 5 words of every cluster are reported in the legend.

When r increases, PDHP retrieves new clusters associated with shorter bursty events.
For instance, the cluster associated with the release of a new episode of Equestria Girls
that went unnoticed for r = 0.5 has been detected with » = 1.5. This happens because
the episode has not been discussed over a long time period, and associated articles have a
vocabulary significantly overlapping with other clusters’ one. A model relying mostly on
textual information might not detect specific words (twilight, equestria, sparkle, etc.). If
detected and a new cluster is created, it might then fail to associate subsequent events to this
new cluster if temporal information plays a lesser role. On the other side, a model favoring
temporal information is much more likely to associate subsequent events to a new cluster
despite textual information fitting well older and more populated clusters.

This can be seen in Fig. 9, where the intensity of a kernel peaks at short times. This results
in encouraging the burstiness. When r is large, a given event is likely to be associated with

@ Springer



2940 G. Poux-Médard et al.

80 it
W trump, us, report, arrest, police
B trump, us, find, report, police we
70 W trump, us, woman, report, police
=N dame, notre, fire, cathedral, paris i
60 B roport, trump, mueller, police, paople g
W princess, equestria, twilight, sparkle, girls
50
40

Intensity

)

S 4

UL
& &

Fig. 13 Limit case of encouraging bursty events clustering—we plot PDHP’s intensity for the News dataset
over the observation period for a large value of r. In this case, textual information plays a marginal role, and
clusters are inferred based on the events publication dates only

subsequent ones even when the associated vocabularies are only vaguely similar. On the other
side, when r is small, older events with closer vocabularies have more chances of getting
associated with it despite their intensity not peaking at the new event time.

4.2.5 Recovering publication cycles

The limit case of encouraging events burstiness is the deterministic allocation of documents
to a cluster based only on their relative positions on the time axis. This is achieved when r
is large. In this case, textual information does not matter and only regularities in the time
distributions are detected. We illustrate such a case on the News dataset in Fig. 13.

In Fig. 13, we plot on the left the intensity associated with the events for each cluster on the
real time axis for r = 2. We see that the two most populated clusters follow precise dynamics.
We added on the right side of the plot the temporal kernel corresponding to each of these
clusters. On the right plot, we retrieve the cause of the daily and weekly cycles observed for the
largest cluster on the left plot. The second most populated cluster follows similar dynamics,
except that its seems to be shifted of half a day on the real-time axis; the peaks are in a phase
opposition with the largest cluster. It is worth noting that the Notre-Dame fire cluster is still
detected; this is due to its vocabulary being different enough from the existing cluster’s ones
to trigger its own cluster, and the associated number of documents being consequent in a
short time window. Interestingly, immediately after this cluster emerged, the dynamics on
the real-time axis also follow a decaying circadian circle over three days.

4.3 Heuristics

4.3.1 Choosing r

We saw that in all the previous experiments, the optimal r was predetermined. In synthetic
experiments, a grid-search strategy was used to determine the best ». We did not come up

with a way to automatically infer the optimal » without trying several values.
However, we provide some heuristics regarding the tuning of r.
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— As r increases, we usually get a smaller number of inferred clusters. This is because
considering the temporal dimension adds consistency to the language model; the tem-
poral intensity prior for a new observation is likely to be non-null, which increases the
probability of not opening a new cluster with respect to a model that does not consider
time.

— As r goes to infinity, we only infer one large cluster that comprises all the observations.
This is because even the slightest difference in the prior intensities leads to a deterministic
cluster choice.

Our leads to automatically determine » involve computing an ad hoc objective metric to
optimize jointly with the likelihood. Given there is no gold standard for clustering in real-
world processes, the choice of r, and therefore the choice of such metric, is left to the user.
As we have shown in Fig. 7 and later in Fig. 10, the choice of r simply tunes the information
on which clusters are based. The clustering objective is to be defined for each situation,
which is made possible by manual tuning of 7. Such an objective could consist in minimizing
the clusters” word distribution entropy, the standard deviation of the effective triggering
kernel, or the average distance between events within a cluster. A possible procedure for
such optimization would involve a multi-arms bandit to deal with this trade-off.

4.3.2 Number of clusters

In previous experiments, we compared our clustering results to the ground truth using the
NMI score. We chose this metric because it allows us to compare a different number of
clusters together. Indeed, it is seldom the case that PDHP infers exactly the right number of
clusters.

Typically, in our synthetic experiments with 2 ground-truth clusters, the number of clusters
could differ significantly at the beginning of the algorithm (up to 10 clusters at once for small
values of 7). However, as the number of observations increases, smaller clusters are discarded
as the algorithm converges toward the 2 correct clusters.

In real-world data, the number of clusters can grow very high —even more for small values
of r. However, the number of observations each of these clusters comprise seems to follow a
power-law distribution. Many of the clusters contain very few observations (5 documents or
less); they are leftovers from the process as it converges toward more robust statistics. This
is why in Figs. 9 and 12, we restrict ourselves to the study of the largest clusters only.

5 Conclusion

We built the powered Dirichlet-Hawkes process as a generalization of the Dirichlet—-Hawkes
process and uniform process and showed how it improves performance on various datasets.
When textual information conveys little information, or when temporal information conveys
little information, and when both do, our model is able to correctly retrieve the original clusters
used in the generation process with high accuracy. A central consideration in document
clustering is that there are no “right” clusters. For instance, we illustrate how textual content
and temporal dynamics can be decorrelated in real-life applications. The framework we
developed is flexible enough to allow users to choose the weight they wish to give to temporal
or textual information depending on the situation; when textual and temporal clusters are
decorrelated, the model allows one to choose which of those to infer.
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Many future extensions are possible for PDHP. For instance, it would be interesting to
develop its hierarchical version (PHDHP) as it has already been done with HDHP for DHP.
Another interesting perspective would be to create a version considering multivariate Hawkes
processes to study how textual clusters’ dynamics relate to each other. Given several recent
works have been based on the regular Dirichlet-Hawkes process, it would be insightful to
study how their results vary when using the powered Hawkes—Dirichlet process instead. A
study on the influence of the language model used along with PDHP would also be interesting
since the text model we used here was simple on purpose (our focus being on the PDHP prior
and not on the model it gets associated with).

Finally, it would be interesting to see how this model would work in another context
where temporal and textual information are intertwined. For instance, in latent social network
inference, we may be able to create clusters according to the observed temporal dynamics of
publications, or according to the textual information shared between users, or according to a
combination of both.
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